|
发表于 2020-8-13 09:04:03
|
显示全部楼层
如果起点有效能是E1,输入功W,终点有效能E2,那么你的有效能效率=E2/(E1+W),而我说的有效能效率是(E2-E1)/W,哪个效率才更能说明问题呢?
* d* S4 _# @3 D- _ S6 E
2 j! g7 o" G H" {7 e/ h! l. a# Q焓值或比焓h1和h2本身并没有意义,有意义的是两者的差值h2-h1,我觉得有效能的情况也一样。压缩机是气体得到有效能的单元,气体有效能增量(E2-E1)才有意义,而(E2-E1)/W正是转换效率。
0 `7 Q1 n' `1 ^4 G/ p
9 Q f8 H& k- k, V理想气体压缩过程的有效能计算,因绝热压缩后终了温度T2=T1*(P2/P1)^((k-1)/k)和绝热压缩功计算公式都是用理想气体性质推导出来的,当然能适用于理想气体。理想气体焓值仅由温度决定,与压力无关,且比热容不随温度而变,而绝热可逆压缩时熵增ΔS=0,输入功W正好等于焓值变化,所以W∝ΔT,这样就可以简单以ΔT表示就行了。
4 B5 Y3 B7 x0 |" J: n! t, i; n: I1 B! W; r4 ~0 C6 [6 Y8 i
实际气体的有效能计算,已知气体组分及P1、T1,用软件,可得到焓值H1,可逆压缩P1升至P2后,ΔS=0,可以求出H2,绝热压缩功W=H2-H1,而实际压缩功与绝热压缩功的差值都转化为热量。
7 i. B9 c" z/ K1 a" P, i- O, r+ z$ `& F" p/ |
我计算低温气体增压过程的有效能效率,是为了说明低温增压过程并不是气体得到有效能的好办法。对于常温增压,如果机器效率低,只要多消费一点电功就行;但对于低温增压,如果机器效率低于某个值,花再多的电功也不能使气体有效能增加。
8 t# n; b5 E: J. q& \; {
; I6 u, |1 u$ w! p当然,如果有廉价的低温冷量可以被利用,比如在液化天然气LNG的接收汽化站,LNG汽化的大量冷量可以被空分设备利用,此时采用低温增压方式就很合适。 |
|